
Copyright is held by the author / owner(s).
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012.
ISBN 978-1-4503-1435-0/12/0008

Local image-based lighting with parallax-corrected cubemaps

Lagarde Sébastien (Lagardese@hotmail.fr) & Antoine Zanuttini (lezanu@gmail.com)
DONTNOD Entertainment Paris, France

 Figure 1. Left: Render of default cubemap. Middle: Lighting artists Cubemap tools. Right: Render of parallax-corrected cubemap (256x256x6).

1. Introduction

Image-based lighting (IBL) is typically used for distant lighting
represented by an infinite environment map. This technique has
been used by many games. Games divide their scenes into
several sectors and associate a cubemap (the environment
mapping of choice due to its graphic hardware performance) to
each of them. The cubemap of the sector where the camera is
located is then used to light objects [1]. The problem with this
approach is that it cannot accurately represent local reflections on
specular and glossy objects.. Our game requires more accurate
local reflections, which implies that a local image-based lighting
technique must be used. Previous local image-based lighting
approaches, such as the Half life 2 approach [2] consist of
assigning an individual cubemap to each objects. These
approaches suffer from lighting seams and parallax issues [3]. We
introduce a new approach which avoids these artifacts while still
preserving extremely high performance on current console
generation hardware (PS3/XBOX360).

2. Lighting seams

In order to achieve seamless lighting transitions between objects
we adopt the single-cubemap approach of the "infinite cubemap"
technique; the same cubemap is applied to all objects of the scene.
However in our case, this single cubemap is the result of blending
several local cubemaps. Contrary to an infinite cubemap, each
local cubemap has a position and must be generated in the game
engine (in an offline preprocess) to accurately represent the local
scene reflection. During the game's runtime, each frame all local
cubemap influences which overlap the camera (or the player) are
selected to be blended together to create the single cubemap
which will be applied to the scene. We develop algorithms for
calculating the blending weights for each selected local cubemaps
and for blend them appropriately. The blend step is entirely done
on the GPU and is very efficient even for current console
generation hardware.

Using a single cubemap (generated from local cubemaps) for all
visible objects, introduces noticeable artifacts for distant reflective
objects. To fight this problem we use the local lighting
information available at the distant object locations to adapt the
cubemap lighting. We also develop some automatic shader level
of detail to smoothly disable cubemap lighting with distance.

3. Parallax issue

A cubemap only defines accurate reflections at the location where
it was generated. Furthermore, a cubemap represents an infinite
box reflection resulting in parallax issues when used (reflected
objects do not appear at the right positions). This is particularly
obvious on planar objects. We develop a new technique to fix the
parallax issue for planar objects (Figure 1 shows walls with a
highly specular planar floor to illustrate the technique). A set of
tools have been developed for lighting artists to help them to
define the rectangular area that a local cubemap must represent
and the provided information is then used at blend time to
correctly adjust planar reflections. Coupled with our GPU
blending algorithm we are able to blend several parallax-
corrected cubemaps efficiently on current console hardware
(Around 0.28ms for 4 parallax-corrected 128x128x6 cubemaps on
PS3). Figure 2 shows another sample of parallax-corrected
cubemap use on a planar object.

Figure 2. Left: Cubemap. Right: Parallax-corrected cubemap.

4. Conclusions

The advantage of our system is to provide an efficient way to
simulate local reflections with seamless transitions between
objects. It requires some tools to ease the work of lighting artists
as well as some setup time.

References

[1] Van der leeuw, The playstation 3 SPUs in the real world.
http://www.slideshare.net/guerrillagames/the-playstation3s-spus-
in-the-real-world-a-killzone-2-case-study-9886224
[2] McTaggarts, Half-Life 2 Valve Source Shading

http://www2.ati.com/developer/gdc/D3DTutorial10_Half-
Life2_Shading.pdf

[3]Valve wiki http://developer.valvesoftware.com/wiki/Cubemaps

http://www.slideshare.net/guerrillagames/the-playstation3s-spus-in-the-real-world-a-killzone-2-case-study-9886224
http://www.slideshare.net/guerrillagames/the-playstation3s-spus-in-the-real-world-a-killzone-2-case-study-9886224
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf

